恆溫恆濕原理的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列線上看、影評和彩蛋懶人包

恆溫恆濕原理的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦黃定加,黃玲媛,黃玲惠寫的 物理化學:(熱力學與動力學篇) 和李居芳 的 冷凍空調實務(含乙級學術科解析)(2020最新版)都 可以從中找到所需的評價。

這兩本書分別來自全華圖書 和全華圖書所出版 。

明新科技大學 工業工程與管理系碩士在職專班 楊昌哲所指導 周暐倫的 應用 FMEA 結合 TRIZ 提昇 RAID 產品品質之探討 (2021),提出恆溫恆濕原理關鍵因素是什麼,來自於磁碟陣列、失效模式效應分析、風險優先數、發明性創意問題解決理論。

而第二篇論文國立成功大學 航空太空工程學系 趙怡欽、陳冠邦所指導 林顯宗的 添加水氣在純氧對流環境下單顆木顆粒之點燃與燃燒機制 (2021),提出因為有 木顆粒、受熱行為、對流熱傳、燃燒過程、純氧燃燒、O2/CO2/H2O環境、點燃機制的重點而找出了 恆溫恆濕原理的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了恆溫恆濕原理,大家也想知道這些:

物理化學:(熱力學與動力學篇)

為了解決恆溫恆濕原理的問題,作者黃定加,黃玲媛,黃玲惠 這樣論述:

  本書中之論述力求簡明扼要、循序漸進,且於書中多舉例題以提昇學習的效果,並於各章的後面均附習題,以備讀者自行研習解答,增進對於有關理論的瞭解。本書中之專有名詞的後面,均附其對照的英文名詞。本書的內容適合作為一般大學及科技大學之化學、化學工程、環境工程、材料科技、生化科技與醫藥學系及相關研究所之物理化學及相關課程的教材,亦可作為從事上述各領域之研究及工作人員的參考書。本書所包括的內容較多、範圍較廣且較深入,教師可配合系所之發展重點及需要,自行選擇適合的章節內容講授。 本書特色   1.本書中之論述力求簡明扼要、循序漸進,且於書中多舉例題以提昇學習的效果,並於各章的後面均

附習題,以備讀者自行研習解答,增進對於有關理論的瞭解。   2.本書的內容適合作為一般大學及科技大學之化學、化學工程、環境工程、材料科技、生化科技與醫藥學系及相關研究所之物理化學及相關課程的教材,亦可作為從事上述各領域之研究及工作人員的參考書。   3.本書所包括的內容較多、範圍較廣且較深入,教師可配合系所之發展重點及需要,自行選擇適合的章節內容講授。

應用 FMEA 結合 TRIZ 提昇 RAID 產品品質之探討

為了解決恆溫恆濕原理的問題,作者周暐倫 這樣論述:

為提昇磁碟陣列產品在半導體設備機台上之產品品質,本研究藉由專家問卷針對提昇RAID產品品質訊息加以分析,並找最有效之改善建議後,回饋改善產品品質,如此可大幅將產品品質提升,更可通過市場客戶的嚴峻考驗及認同,未來銷售產品顧客抱怨度也會相對降低;因不良的產品可能會造成顧客使用上時間及財產得損失,故如何將產品品質提升,並有效將產品不良率降至最低,將顯得如此重要,再與事前的品管作業相互結合後,將可達到產品從設計至製造且出貨供顧客使用的穩定品質。本研究以風險優先數(Risk Priority Number, RPN)針對RAID(磁碟陣列)分析原理由維修故障案件資料中,針對失效項目分析找出主要其嚴重度

、發生度及難檢度進而計算出風險優先數(Risk Priority Number, RPN)最重要的項目,以視為產品之「失效模式效應分析(Failure Mode Effect Analysis, FMEA)」項目,此亦為產業常用來解決分析產品失效要素的實務方法之一,經失效模式的分析列出改善建議及措施,再經由「發明性創意問題解決理論(TRIZ)」來找出相對惡化的項目,並提供惡化項目的建議解決方法,再回饋於產品之設計及製造部門,透過可行性評估通過後實施。案例研究公司藉由此管理技術協助,由產品失效模式著手改善產品品質,以降低不良率及保固期維修率(Warranty claim rate),進而採取適當

措施與預防方法,達成提昇顧客所滿意之品質。

冷凍空調實務(含乙級學術科解析)(2020最新版)

為了解決恆溫恆濕原理的問題,作者李居芳  這樣論述:

  本書詳細介紹冷媒特性圖及空氣特性圖的基本應用,使讀者能進入設計開發的領域;又配合檢定規範,有系統的整理重點,更能協助讀者順利考取執照!適用於冷凍空調科系、欲考乙級技術士之社會人士或從事冷凍空調行業者使用。本書除了介紹檢定之要領外,較注重實務方面;尤其在配管及冷凍系統附件的應用,更有詳細扼要的敘述!是一本相當經濟實用的好書。 本書特色   1.詳細介紹冷媒特性圖及空氣特性圖的基本應用,使讀者能進入設計開發的領域。   2.配合檢定規範,有系統的整理重點,協助讀者順利考取執照。   3.本書對冷凍空調原理及實務設計有詳細的說明,對讀者有實務設計有極大的幫助。

添加水氣在純氧對流環境下單顆木顆粒之點燃與燃燒機制

為了解決恆溫恆濕原理的問題,作者林顯宗 這樣論述:

純氧燃燒與碳捕捉封存被視為兼顧產能與低汙染排放之潛力燃燒技術之一,若結合具碳中和特性之生質料於能源系統(產電/熱),亦可逐漸降載對化石燃料的高度依賴與達成負碳排之目標。有別於傳統空氣燃燒,純氧燃燒時需將部分煙道氣體迴流至燃燒室用以控制爐溫,可分為乾迴流(O2/CO2)與濕迴流(O2/H2O/CO2)。其中濕迴流模式下的生質料燃燒過程極為複雜,牽涉許多異相與氣相反應及燃燒現象仍待釐清。因此,本研究選用木顆粒作為代表燃料,探討在不同溫度與氣體氛圍中的點燃與燃燒機制。首先透過成份分析、熱重分析、恆溫裂解產氣等實驗進行燃料基礎受熱特性探討,並建置一套新型單顆料錠燃燒系統,量測木顆粒在均溫強制對流環境

(空氣、乾/濕迴流純氧燃燒)下之影像、質量、顆粒溫度與尾氣變化。最後利用反應動力學搭配化學反應機制模擬氣態揮發份(C0-C3碳氫燃料)的自動點燃特性。熱重分析結果顯示,木顆粒在空氣下的質量流失溫度區間主要在240–400°C與400–520°C,異相點燃發生在293°C,整體活化能約介於108.8–184.8 (kJ/mol)。然而,在空氣環境下之燃燒特性指數(Dv, Di, Db與S index)顯示與21–30%之純氧環境(O2/CO2)相當。單顆木顆粒(0.5 g)在恆溫下的燃燒實驗發現當環境氣流溫度Ts ≥ 550°C時有明顯的氣態火焰點燃,且在Ts = 650°C時機制發生了轉變,這

是由於快速脫揮發導致氧氣在受熱初期無法擴散至焦炭表面,因此氣相點燃率先發生。尾氣分析呈現焦炭燃燒階段具有較高的CO排放,揮發份燃燒時氣態燃料則傾向轉為CO2。基於不同起始溫度與氣體環境,歸納了熱裂解、異相氧化、氣相氧化與異相氣化反應,並確立了焦炭與氣態火焰之點燃溫度區間,可作為生質料在熱化學轉換應用時之操作參考。在Ts = 550°C與Re = 450之純氧對流環境下,氣態火焰穩駐燃燒發生在氧氣濃度需大於21%。而隨著H2O取代CO2,顆粒燃燒溫度與重量流失速率均明顯提升。當Oxy-21%時,若以H2O取代20%的CO2,反應時間ti,char、ti,flame、tchar與ttotal分別縮

短7.89%、6.02%、17.98%與16.05%,這是由於H2O相較於CO2具有較高的熱擴散係數(約2.1倍),且O2在H2O中的質量擴散能力也較高(約1.61倍),因此促進整體反應速率的提升。此外,發現tflame大幅度地上升約266%,此為H2O增進了焦炭氣化反應並轉移部份燃料至可燃性氣體的緣故。最後歸納在純氧環境(15–33% O2搭配0–50% H2O)下的正規化焦炭燃燒時間關係式為[O2]-1.616[H2O]-0.232,顯示氣體與焦炭的反應速率依序為char-O2 > char-H2O > char-CO2。此外,木顆粒在27%O2/73%CO2及21%O2/50%H2O/2

9%CO2環境下的總燃燒時間顯示與空氣燃燒相當。數值模擬結果顯示除了CO之外,大多數C0-C3燃料可在450–550°C空氣中引燃,與實驗觀測到的揮發分火焰點燃溫度區間相似。在550°C純氧環境中,點燃時間隨著O2與H2O濃度的提升而降低。在Oxy-21%環境下且H2O逐漸取代CO2時,可發現OH與H自由基濃度明顯提升,且主導最大熱釋率的反應步驟顯示逐漸由R3(H2+OH↔H+H2O)與R91(CH3+O↔CH2O+H)轉移至R35(CO+OH↔CO2+H)與R6(H+OH+M↔H2O+M)。點燃時間的靈敏度分析則顯示R98 (CH3+HO2↔CH3O+OH)、R156 (CH2O+HO2↔H

CO+H2O2)與R46 (CH4+HO2↔CH3+H2O2)為主導步驟。最後,關於H2O在純氧對流環境下取代CO2時促進生質料的氣相引燃現象,本研究提出以流體停滯時間(tflow)與化學反應時間(tchem)之關係式加以描述。添加水氣會導致燃料脫揮發速率與氣相化學反應速率提升,降低tchem,使達姆科勒數(Damköhler number)的上升速率高於在O2/CO2環境下,率先達臨界值而發生火焰引燃。本研究提供了對生質料點燃和燃燒基本原理的探討,可作為未來將生質料應用在濕迴流純氧燃燒系統之參考。