染料敏化太陽能電池結構的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列線上看、影評和彩蛋懶人包

染料敏化太陽能電池結構的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦郭向云寫的 高比表面積碳化硅 和王新東,王萌的 新能源材料與器件都 可以從中找到所需的評價。

這兩本書分別來自化學工業 和五南所出版 。

中原大學 物理研究所 張勝雄所指導 劉世堯的 P3CT-Na層數對於反式鈣鈦礦太陽能電池之影響 (2021),提出染料敏化太陽能電池結構關鍵因素是什麼,來自於鈣鈦礦太陽能電池、P3CT-Na層數、介面接觸、分子堆疊。

而第二篇論文國立雲林科技大學 化學工程與材料工程系 劉博滔所指導 許晉齊的 配體交換修飾上轉換奈米粒子以提高低溫染料敏化太陽能電池效率之研究 (2021),提出因為有 上轉換奈米粒子、配體交換、染料敏化太陽能電池的重點而找出了 染料敏化太陽能電池結構的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了染料敏化太陽能電池結構,大家也想知道這些:

高比表面積碳化硅

為了解決染料敏化太陽能電池結構的問題,作者郭向云 這樣論述:

高比表面積碳化矽是最近十幾年來逐漸引起人們重視的一種新材料,具有堆積密度低(約0.2g/cm3)、比表面積大(>30m2/g)的特性,是一種性能優異的載體材料。   本書系統地介紹了高比表面積碳化矽的製備方法,以及高比表面積碳化矽作為載體材料在多相催化、光催化和電催化等領域應用的研究進展。為了讓讀者更全面地瞭解高比表面積碳化矽材料,對其在電磁波吸收領域的應用情況也作了一些簡單介紹。 本書適合從事多相催化、光催化和電催化研究的科研人員,以及高等院校相關專業的師生閱讀。 第1章碳化矽概述/001 1.1自然界的碳化矽/001 1.2碳化矽的人工合成/004 1.3碳化矽的結構

和命名/007 1.4碳化矽的性質和應用/007 1.4.1碳化矽在磨料和磨具領域中的應用/009 1.4.2碳化矽在耐火材料中的應用/010 1.4.3碳化矽在複合材料增強方面的應用/010 1.4.4碳化矽在電子材料領域的應用/010 1.4.5碳化矽在吸波材料中的應用/010 1.4.6碳化矽在生物醫學領域的應用/011 參考文獻/012 第2章高比表面積碳化矽的製備方法/014 2.1範本法/015 2.1.1碳範本法/015 2.1.2氧化矽範本法/021 2.2碳矽凝膠碳熱還原法/031 2.3化學氣相沉積法/034 2.4矽烷及聚碳矽烷熱解法/036 2.5溶劑熱還原法/037

2.6碳化矽複合型載體的製備方法/040 2.6.1碳化矽衍生碳/040 2.6.2分子篩/碳化矽複合物/040 參考文獻/042 第3章高比表面積碳化矽作為多相催化劑載體/048 3.1高溫催化反應/049 3.1.1甲烷重整制合成氣/049 3.1.2烷烴的氧化偶聯和脫氫反應/057 3.2強放熱反應/063 3.2.1費托合成/063 3.2.2甲烷催化燃燒/066 3.2.3甲烷化反應/069 3.2.4甲醇轉化/071 3.2.5其他放熱反應/072 3.3苛刻條件下的反應/073 3.3.1H2S的選擇性氧化/073 3.3.2合成氨/073 3.3.3硫酸分解反應/074 參

考文獻/075 第4章高比表面積碳化矽光催化應用/082 4.1碳化矽光催化的一般原理/083 4.2光催化分解水/085 4.2.1純碳化矽光解水/086 4.2.2金屬/碳化矽光解水/090 4.2.3石墨烯碳化矽複合物光解水/091 4.2.4半導體碳化矽複合物光解水/093 4.3光催化降解有機污染物/094 4.4光催化CO2還原/098 4.5光催化有機合成/100 參考文獻/113 第5章高比表面積碳化矽電催化應用/118 5.1電化學感測器/119 5.1.1氣體檢測/119 5.1.2溶液中離子的檢測/121 5.1.3有機污染物及生物分子的檢測/122 5.2燃料電池催

化劑/128 5.2.1氧氣還原催化劑/129 5.2.2甲醇氧化催化劑/131 5.3染料敏化太陽能電池/137 5.3.1碳化矽光陽極/138 5.3.2碳化矽對電極/139 5.4鋰離子電池材料/140 5.5超級電容器材料/145 參考文獻/148 第6章高比表面積碳化矽吸波材料/156 6.1材料吸收電磁波的機理/157 6.2SiC微粉的吸波性能/159 6.3納米SiC的吸波性能/161 6.4摻雜SiC的吸波性能/164 6.5SiC複合材料的吸波性能/166 參考文獻/168 碳化矽是一種常見的工業陶瓷材料,自1891年被霍華德·艾奇遜合成出來以後,在磨

料、磨具、耐高溫陶瓷以及微電子領域得到了廣泛的應用。目前,全世界碳化矽的年產量已超過200萬噸,都是採用改進的艾奇遜法生產出來的。這種方法以河沙、焦炭(或煤)等為原料,通過石墨電極加熱到2500℃以上,氧化矽和碳之間發生反應形成碳化矽。由於反應溫度高,得到的產品都是α-碳化矽,比表面積很低,一般不到1m2/g。碳化矽具有非常高的機械強度和化學穩定性,而且導電導熱性能良好。這些優良的性能,使得它有望成為一種新的催化劑載體材料。然而,碳化矽要想作為催化劑載體得到應用,它的比表面積就必須得到大幅度的提高。 早在20世紀90年代,國外一些學者就開展了碳化矽作為催化劑載體的研究,也發展出了一些製備高比

表面積碳化矽的方法。例如,法國斯特拉斯堡大學Loudex教授課題組發明的形狀記憶合成法就是一種有效的製備高比表面積碳化矽的方法,可製備比表面積大於30m2/g的β-碳化矽。國內也有不少學者注意到碳化矽作為催化劑載體的優越性。編著者課題組,從2000年開始研究高比表面積碳化矽的製備方法,發明了一種溶膠凝膠結合碳熱還原製備碳化矽的方法。 這種方法經過初步的工業放大試驗後,仍能製備出比表面積大於60m2/g的β-碳化矽。其後,課題組一直從事高比表面積碳化矽的研究工作,探索了這種材料作為催化劑載體在高溫、強放熱等反應中的應用,發現碳化矽作為載體不僅可改善催化劑的穩定性,而且催化劑的預處理條件也相對簡

單。最近幾年,人們發現碳化矽用於光催化和電催化時,也表現出了一些特殊的優勢。因此,有關碳化矽在熱催化、光催化以及電催化方面應用的文獻報導越來越多。 國內雖然已經有一些關於碳化矽的著作,但都是把碳化矽作為一種高性能陶瓷材料或者微電子材料來介紹的。據編著者所知,國內目前還沒有關於高比表面積碳化矽製備以及高比表面積碳化矽在催化中應用的書籍。因此,我們感到有責任將分散在浩如煙海的科學文獻中關於碳化矽的工作,進行系統整理和綜合分析,編成一書,以利于我國研究人員在進入這一領域時能迅速對本領域有一個比較全面的瞭解。 本書在成書過程中得到了作者前工作單位(中國科學院山西煤炭化學研究所)課題組同事和學生的大

力協助。靳國強、王英勇、郭曉甯和童希立等同事,多年來一直在本課題組從事有關碳化矽的研究,在本書寫作過程中做了大量工作,不僅協助本人整理了相關章節的文獻,甚至還寫出了章節的初稿。本書中介紹的相當一部分工作都是本課題組完成的,這得益於曾經和仍然在課題組學習和工作的研究生們。如果沒有他們的辛勤努力,肯定不可能有這本書的問世。另外,在本書寫作過程中,經常需要查找一些文獻,也是請學生們幫忙找到的。在此,對他們一併表示感謝。 國家自然科學基金委員會十幾年來曾多次支持課題組開展關於高比表面積碳化矽的研究工作,山西省科技廳也以科技重大專項的形式支持高比表面積碳化矽產業化的研究,在此表示感謝。感謝江蘇省綠色催

化材料與技術重點實驗室資助本書出版。最後,我要感謝化學工業出版社的相關編輯,沒有他們的辛勤付出,本書的完成也是不可想像的。 高比表面積碳化矽雖然是一個比較小的研究領域,從眾多期刊中找出相關的文獻仍然並非易事,再加上編著者水準有限,疏漏之處在所難免,敬請專家和讀者批評指正。 郭向雲 2019年5月于常州大學

P3CT-Na層數對於反式鈣鈦礦太陽能電池之影響

為了解決染料敏化太陽能電池結構的問題,作者劉世堯 這樣論述:

現今能源仍是各國必須討論的重大議題,每年需求的能源漸漸上升,進而造成無法單靠節流解決的能源議題,於是他們轉向尋找更多可使用的能源,其中對於環境負擔低的綠色能源吸引了大家的目光,太陽能電池是一種易架設且低地理環境限制的一種能源,而鈣鈦礦晶體薄膜更是其中的佼佼者,鈣鈦礦吸光材料是一種高吸光效率的有機金屬鹵化物材料,可以用低成本的溶液製備法製程。本論文研究的太陽能電池之結構為Ag/PCBM/MAPbI3/P3CT-Na/ ITO/glass。使用常溫溶液旋轉塗佈法製作反式結構鈣鈦礦太陽能電池元件,Ag與ITO分別為元件的陰極與陽極,鈣鈦礦(CH3NH3PbI3,MAPbI3)晶體薄膜為主動層,碳六

十衍生物(PCBM)與聚噻吩(P3CT-Na)分別為電子傳遞層與電洞傳遞層。P3CT-Na水溶液的濃度會影響其在基板上堆疊的層數,透過分析J-V曲線圖、吸收光譜、原子力顯微鏡、水滴接觸角、X光繞射分析儀、光激發螢光光譜儀圖譜及影像表現,我們可以了解P3CT-Na分子堆疊影響了MAPbI3晶體薄膜的成長,可以藉由控制P3CT-Na的層數來提升反式結構鈣鈦礦太陽能電池的開路電壓、電路電流密度、填充因子及效率。

新能源材料與器件

為了解決染料敏化太陽能電池結構的問題,作者王新東,王萌 這樣論述:

  本書全面系統闡述了新能源材料與器件,包括能源物理化學、能源存儲與轉化原理、關鍵材料與器件、發展概況和應用前景。在風能、太陽能發電、二次電池、超級電容器、燃料電池和金屬-空氣電池等材料製備與器件技術的基礎上,還針對目前電動汽車和規模儲能應用,介紹了固態鋰電池、質子交換膜純水電解、氫能等前沿材料與器件。本書內容豐富,資料和理論新穎,結構嚴謹。書中有大量習題和思考題,並附有最新文獻,便於深入學習。   本書是大學「新能源材料與器件」專業教材,兼顧大學材料、能源、冶金、化學、化工專業高年級及研究生教材;同時也是從事新能源、太陽能電池、鋰電池、燃料電池、電動汽車、規模儲能等領域

研究與應用人員的必備基礎參考書。  

配體交換修飾上轉換奈米粒子以提高低溫染料敏化太陽能電池效率之研究

為了解決染料敏化太陽能電池結構的問題,作者許晉齊 這樣論述:

摘要 IABSTRACT II誌謝 III目錄 IV表目錄 VII圖目錄 VIII第一章 緒論 11.1前言 11.2太陽能電池簡介 21.2.1 矽晶太陽能電池[4] 31.2.2 合物薄膜半導體電池 41.2.3 新興薄膜科技太陽能電池 51.3 稀土材料簡介 61.3.1 稀土摻雜上轉換發光材料 71.4 研究動機 9第二章 文獻回顧 102.1 染料敏化太陽能電池 102.1.1 染料敏化太陽能電池 102.1.2 染料敏化太陽能電池結構 112.1.3 染料敏化太陽能電池之原理 152.2 染料敏化太陽能電池低溫製程文獻 172.2.1 低

溫製程TiO2文獻 172.2.2 低溫二氧化鈦塗佈方法 202.2.3 二氧化鈦緻密層(compact layer) 222.2.4 二氧化鈦薄膜後處理 232.3 上轉換奈米粒子 252.3.1 上轉換奈米螢光體起源 252.3.2 上轉換奈米螢光體之發光機制 252.3.3 上轉換奈米螢光體材料 262.3.5 上轉換奈米螢光體合成方法 292.3.6 上轉換奈米粒子表面修飾 312.3.7 上轉換奈米粒子摻雜進染料敏化太陽能電池中 322.4.1 光照強度 332.4.2 太陽能電池特徵曲線及參數 34第三章 實驗方法 363.1 實驗藥品 363.2 實

驗儀器設備 383.2.1 壓力釜(Telflon-Lined Autoclave) 393.2.2 螢光光譜儀(fluorescence Spectrum) 393.2.3 高解析度穿透式電子顯微鏡(High-Resolution Transmission Electron Microscope, HR-TEM) 403.2.4 紫外光/可見光光譜儀(UV/Vis Spectrophotometer) 403.2.5 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 403.2.6 太陽光模擬器 (Solar Simulator) 413

.2.7 光電流-電壓量測儀(Source Meter) 413.2.8 電化學阻抗分析儀(Electrochemical Impedance Spectroscopy, EIS) 413.3 實驗方法 423.3.1 二氧化鈦粒子合成 423.3.2 上轉換奈米粒子核殼結構合成 433.3.3 上轉化奈米粒子的介面改質 453.3.4 上轉換奈米粒子摻雜二氧化鈦粒子 463.3.5 P25漿料的製備 463.3.6 四氯化鈦水溶液的製備 463.3.7 緻密層水溶液的製備 473.3.6 工作電極製備 473.3.7 對電極之製備 473.3.8 電解液之製備 47

3.3.9 電池組裝 48第四章 結果與討論 494.1 UCNPs的材料分析 494.2 油相水相上轉換奈米粒子之光學性質 534.3 上轉換奈米粒子摻雜於高結晶二氧化鈦的表面檢測 554.4 水性跟油性UCNPs摻雜於h-TAc之電池元件之檢測 594.5 水性跟油性UCNPs的檢測 614.6 水性不同濃度UCNPs於h-TAc元件之應用 634.7 摻雜與未摻雜之染料吸脫附 65第五章 結論 66參考文獻 67