doc的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列線上看、影評和彩蛋懶人包

doc的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦P. M., Visakh寫的 Natural Rubber Composites and Nanocomposites 和Klastorin, Michael的 Creating Back to the Future: The Musical都 可以從中找到所需的評價。

這兩本書分別來自 和所出版 。

國立陽明交通大學 電機資訊國際學程 楊谷洋、彭文陽所指導 馬約瑟的 設計與實作應用於西瓜採集無人機系統之人工智慧電腦視覺系統 (2021),提出 doc關鍵因素是什麼,來自於計算機視覺、人工智能、Pix2Pix、無人機、ROS、西瓜、Nvidia Jetson Nano。

而第二篇論文國立臺北科技大學 電機工程系 胡國英、姚宇桐所指導 陳俊宇的 應用無橋式升降壓型功率因數修正器及LLC諧振式轉換器於USB電力傳輸 (2021),提出因為有 通用輸入、無橋式、升降壓型、高功率因數、LLC諧振式轉換器、USB電力傳輸的重點而找出了 doc的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了 doc,大家也想知道這些:

Natural Rubber Composites and Nanocomposites

為了解決 doc的問題,作者P. M., Visakh 這樣論述:

Visakh P.M. is a prolific editor with more than 16 books to his name. He isworking as a postdoc doc. researcher at the Department of Ecology and Basic Safety, Tomsk Polytechnic University (TPU), Tomsk, Russia. He obtained his PhD, MPhil and MSc degreases from School of Chemical Sciences, Mahatma Gan

dhi University, Kerala, India. His research interests include: polymer nanocomposites, bio-nanocomposites, rubber-based nanocomposites, fire retardant polymers, and liquid crystalline polymers and silicon sensors.

doc進入發燒排行的影片

設計與實作應用於西瓜採集無人機系統之人工智慧電腦視覺系統

為了解決 doc的問題,作者馬約瑟 這樣論述:

本文設計和實現了一種用於採集、導航和檢測西瓜的計算機視覺系統的,該系統使用無人駕駛飛機且無需人工干預。該系統實現了單板計算機Nvidia Jetson Nano和為圖像傳輸樣式(Pix2Pix)而創建的捲積神經網絡。這些元素整合在一起用於檢測,姿態估計和導航以達到目標。所有流程均由狀態機管理,該狀態機負責激活或停用在後台運行的不同流程步驟。ROS平台用於創建不同進程之間的數據交換。無人機使用稱為mavlink的標準化協議來將單板計算機與飛行計算機進行通信。ROS環境中的mavros用於解釋兩個元素之間的所有數據。無人機的目標是創建一個無監督的系統以快速便捷的方式處理繁重的任務,例如西瓜收穫。

用於檢測的神經網絡結構經設計可達到30幀FPS,可在配套計算機中滿足較高的可靠性,較低的內存使用以及快速判斷來滿足這三個條件,這些條件對於實現自主飛行是必不可少的。

Creating Back to the Future: The Musical

為了解決 doc的問題,作者Klastorin, Michael 這樣論述:

The official behind-the-scenes companion to the stage musical adaptation of Back to the FuturePremiering at the Manchester Opera House in February 2020 to rave reviews--including a notice from the Guardian that the show "sets a new standard of spectacle," Back to the Future: The Musical brings th

e classic 1985 film to life on the theatrical stage. Featuring music and lyrics by Alan Silvestri and Glen Ballard and a book by Bob Gale (adapted from the original screenplay by Gale and Robert Zemeckis), the show stars Tony Award-winner Roger Bart as Doc Brown and Olly Dobson as Marty McFly. Creat

ing Back to the Future: The Musical offers fans of the film franchise and lovers of musical theater an engrossing and entertaining look at the birth of a new theatrical classic. With unprecedented access to cast and crew, author Michael Klatorin (Back to The Future: The Ultimate Visual History) pair

s exclusive, in-depth interviews with previously unpublished photography; excerpts from Bob Gale’s personal journal; and a foreword by Gale to reveal and detail the years-long process, and the creative ingenuity and technical innovation, that went into the show’s West End premiere.

應用無橋式升降壓型功率因數修正器及LLC諧振式轉換器於USB電力傳輸

為了解決 doc的問題,作者陳俊宇 這樣論述:

摘 要 iABSTRACT ii致謝 iv目錄 v圖目錄 x表目錄 xxix第一章 緒論 11.1 研究動機及目的 11.2 研究方法 111.3 論文內容架構 12第二章 先前技術之動作原理與分析 132.1 前言 132.2 有橋式升降壓型功率因數修正電路架構與其動作原理 132.3 諧振式轉換器架構與特性 182.3.1 串聯諧振式轉換器 182.3.2 並聯諧振式轉換器 202.3.3 串並聯諧振式轉換器 222.4 USB Power Delivery 25第三章 所提無橋式升降壓型功率因數修正電路與LLC諧振式轉換器之動作原理與分析 263

.1 前言 263.2 電路符號定義及假設 263.3 所提電路之工作原理與數學分析 293.3.1 無橋式升降壓型功率因數修正電路之運作行為 303.3.2 無橋式升降壓型功率因數修正電路之電壓轉換比 333.3.3 無橋式升降壓型功率因數修正電路之電感電流邊界條件 353.3.4 無橋式升降壓型功率因數修正電路之實際電壓轉換比 373.3.5 LLC諧振轉換電路之運作行為 383.3.6 LLC之電壓增益 533.3.7 LLC電壓增益與K值關係 553.3.8 電壓增益與品質因素Q關係 57第四章 系統之硬體電路設計 584.1 前言 584.2 系統架構 5

84.3 架構之系統規格 604.4 系統設計 614.4.1 輸入端之差動濾波器設計 614.4.2 電感L1與電感L2設計 68(A) 電感L1與L2之感量 68(B) 電感L1與L2之磁芯選用 724.4.3 輸出電容Co1設計 754.4.5 模擬變載輸出電壓變動量量測 764.4.6 諧振槽參數設計 79(A) 變壓器Tr之匝數比n 79(B) 輸出等效阻抗Rac 79(C) 品質因數Q 80(D) 諧振元件Lr、Cr、Lm參數 84(E) 磁性元件Lm、Lr繞製 854.4.5 輸出電容Co2設計 924.4.6 同步整流器IC說明 934.4

.7 功率開關與二極體之選配 95(A) 升降壓型功率因數修正器之開關元件選配 96(B) LLC諧振式轉換器之開關元件選配 974.4.7 驅動電路設計 984.5 電壓偵測電路設計 994.6 元件總表 102第五章 軟體規劃及程式設計流程 1035.1 前言 1035.2 程式動作流程 1035.2.1 ADC取樣與資料處理 1045.2.2 移動均值濾波模組 1065.2.3 PI控制器模組與限制器模組 1085.2.4 控制開關訊號模組 110第六章 模擬與實作波形 1126.1 前言 1126.2 電路模擬結果 1126.2.1 電路於15W功率

等級之模擬波形圖 1146.2.2 電路於27W功率等級之模擬波形圖 1196.2.3 電路於45W功率等級之模擬波形圖 1246.2.4 電路於100W功率等級之模擬波形圖 1296.3 所提功率因數修正電路的實驗波形圖 1356.3.1 單級功率因數修正電路於16.6W功率等級之實驗波形圖 136(A) 輸入電壓85V之波形量測 136(B) 輸入電壓110V之波形量測 139(C) 輸入電壓220V之波形量測 142(D) 輸入電壓264V之波形量測 1456.3.2 單級功率因數修正電路於30W功率等級之實驗波形圖 148(A) 輸入電壓85V之波形量測 148

(B) 輸入電壓110V之波形量測 152(C) 輸入電壓220V之波形量測 155(D) 輸入電壓264V之波形量測 1586.3.3 單級功率因數修正電路於50W功率等級之實驗波形圖 161(A) 輸入電壓85V之波形量測 161(B) 輸入電壓110V之波形量測 164(C) 輸入電壓220V之波形量測 167(D) 輸入電壓264V之波形量測 1706.3.4 單級功率因數修正電路於111W功率等級之實驗波形圖 173(A) 輸入電壓85V之波形量測 173(B) 輸入電壓110V之波形量測 177(C) 輸入電壓220V之波形量測 181(D) 輸入電壓264

V之波形量測 1846.3.5 單級功率因數修正電路實驗波形比較結果之小結 188(A) 16.6W之功率等級 188(B) 30W之功率等級 189(C) 50W之功率等級 189(D) 100W之功率等級 1906.4 所採用之LLC諧振式電路的實驗波形圖 1926.4.1 單級LLC諧振式電路於15W功率等級之實驗波形圖 1926.4.2 單級LLC諧振式電路於27W功率等級之實驗波形圖 1966.4.3 單級LLC諧振式電路於45W功率等級之實驗波形圖 2016.4.4 單級LLC諧振式電路於100W功率等級之實驗波形圖 2056.5 所提電路之變載測試 211

6.5.1 系統於15W功率等級之變載實驗波形圖 2116.5.2 系統於27W功率等級之變載實驗波形圖 2206.5.3 系統於45W功率等級之變載實驗波形圖 2296.5.4 系統於100W功率等級之變載實驗波形圖 2386.6 實驗相關參數量測 2496.7 損失分析 253(1) 開關S1~S7之損失 253(2) 二極體D1、D2、D3之損失 255(3) 磁性元件之損失 255(5) 電容元件之損失 257(6) 損失分析總結 258第七章 文獻比較 260第八章 結論與未來展望 2628.1結論 2628.2 未來展望 262參考文獻 263符號彙

編 272