Hyundai tracking的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列線上看、影評和彩蛋懶人包

Hyundai tracking的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦Manabe, Shunji,Kim, Young Chol寫的 Coefficient Diagram Method for Control System Design 可以從中找到所需的評價。

另外網站Safety Related Recall Campaigns for Motor Vehicles and Motor ...也說明:Model ( s ) : HYUNDAI EXCEL Year ( s ) : 1990 - 1994 No. of Vehicle ( s ) ... CHATTER IN THE TRACK AND MAY EVENTUALLY STOP TRACKING AND BECOME INOPERATIVE .

國立臺灣大學 機械工程學研究所 鄭榮和所指導 劉書廷的 基於參數識別模型之適應性巡航控制與車身動態穩定輔助系統開發實務驗證 (2020),提出Hyundai tracking關鍵因素是什麼,來自於參數識別、基因演算法、慣性量測單元校準、適應性巡航控制、車身動態穩定控制、質量估測。

而第二篇論文國立臺灣大學 機械工程學研究所 鄭榮和所指導 張智維的 應用於線控車輛的牽引力控制和防鎖死煞車策略開發與硬體在環測試驗證 (2020),提出因為有 防鎖死煞車系統、牽引力控制系統、模糊控制、硬體在環測試驗證、線控煞車、線控驅動、駕駛輔助系統的重點而找出了 Hyundai tracking的解答。

最後網站E-book: Productivity gains in real time – Unlocking ROI in ...則補充:Tracking finished vehicles at scale in plant yards, ports, ... from OEMs and vehicle logistics decision makers, including Hyundai Glovis, ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了Hyundai tracking,大家也想知道這些:

Coefficient Diagram Method for Control System Design

為了解決Hyundai tracking的問題,作者Manabe, Shunji,Kim, Young Chol 這樣論述:

Dr. Shunji Manabe’s biography: He received the B.S. degree from the University of Tokyo, M.S. degree from Ohio State University, and Ph.D. degree from the University of Tokyo in all Electrical Engineering. He worked with Central Research Lab., and the plant for the space-development project, Mitsubi

shi Electric Corporation from 1952 to 1990, where he was a research/chief engineer and engaged in various control system designs including electric motor speed control, tracking RADAR control, flight simulator, wind tunnel drive, spacecraft control, and robotics and so on. Then, he worked with the D

epartment of Control Engineering, Tokai University, from 1990 to 2000 as a professor. In the early 1990s, he invented a unique control design theory, so called the Coefficient Diagram Method (CDM), which is very useful for both practical control system engineers working on classical approach and mod

ern control researchers. He has published important results related to CDM over the past two decades and received a lot of attention, citing hundreds of times in the academic journals and conference proceedings.​Dr. Young Chol Kim’s biography: He received the B.S. degree from the Korea University in

1981, and M.S. and Ph.D. degrees in Electrical Engineering from Seoul National University, Korea, in 1983 and 1987, respectively. He has been with the Department of Electronic Engineering, Chungbuk National University, Korea, since 1988, and is currently a professor. He was a visiting scholar at Te

xas A & M University in 1991 and Vanderbilt University/Tennessee State University in 2001. He served as the president of the Information and Control Society of the Korean Institute of Electrical Engineers (KIEE) from 2009 to 2010. Dr. Kim has won numerous academic awards, including Myungsam Ko Award

in 2004 from ICROS, Heungseok Yang Award in 2012 and IJCAS Award in 2019 from KIEE, and multiple awards for outstanding papers. His team won second prize with 50 million won at the 2012 Korea Autonomous Vehicle Contest hosted by Hyundai Motor Group. He has been involved in Dr. Manabe’s CDM research

since 1997 and has been collaborating for over 20 years. Dr. Kim has presented the important analytical results of the CDM theory under the modified name, Characteristic Ratio Assignment (CRA), instead of CDM. He published more than 130 research articles in the area of control theory, system identi

fications, and control system designs for autonomous vehicles.

基於參數識別模型之適應性巡航控制與車身動態穩定輔助系統開發實務驗證

為了解決Hyundai tracking的問題,作者劉書廷 這樣論述:

考量現有先進駕駛輔助系統( Advanced Driver Assistance Systems, ADAS )多以商用小客車為開發主體進行設計,較少關注大型車輛(貨車、卡車)的需求。本研究考量大型車輛需求,透過建置估測器系統所獲取車輛狀態來開發一套能應對大型車輛負載變化之適應性巡航控制( Adaptive Cruise Control, ACC )系統,透過車載狀態的偵測來調整ACC系統所應維持理想車距,以提高ACC系統在不同車載下的適應性並針對高負載情況提高車距以策安全,從而降低駕駛因疲勞而發生交通事故的機率。針對車輛安全防護部分,本研究也透過估測器資訊開發一套具備適應性調整的車身電子穩

定控制( Electronic Stability Control, ESC )系統,透過估測車載狀態與路面摩擦係數來調整ESC系統煞車力,以期加強系統安全性與適應性。本研究為驗證所開發ACC與ESC策略在實際硬體系統上運作的可行性,也利用自行開發雙軸動力計平台完成硬體在環迴路( Hardware in The Loop, HiL )測試,並透過雙軸動力與煞車系統測試平台的驗證程序確認控制策略運行可靠度,也確認其在實際硬體運作上安全且具備效力。為開發上述駕駛輔助系統,需建立目標車輛模型,藉由系統模型模擬才能有效體現所開發控制策略的優劣。本研究提出一套基於基因演算法的參數識別策略,透過實車測試數

據來識別系統參數,以得到符合實車規格之車輛模型,後續開發之控制策略皆可透過此模型來進行模擬及測試。本研究整合車輛系統建模與先進駕駛輔助系統開發兩大主軸,完成整套ACC與ESC策略開發驗證程序。

應用於線控車輛的牽引力控制和防鎖死煞車策略開發與硬體在環測試驗證

為了解決Hyundai tracking的問題,作者張智維 這樣論述:

線控車輛(X-by-wire Vehicle)為自駕技術關鍵之一,利用電子訊號取代傳統車輛油門踏板等機械結構,能更有效率的實現自動駕駛。為了滿足國內安全法規並確保自動駕駛的安全性,本研究發展一套應用於線控車輛的防鎖死煞車與牽引力控制系統,避免車輪產生空轉或鎖死的現象,並使線控車輛的加減速性能進一步提升。本研究首先根據輪速訊號與加速度訊號估測輪胎縱向力、整車重量、車身速度、輪胎滑差等控制器所需訊號,以此為基礎發展TCS與ABS控制策略,前者TCS利用最大可傳遞力矩估測(MTTE)限制馬達輸出扭力避免驅動輪空轉,並且會通過PI回授控制修正估測誤差,後者ABS利用模糊控制技術控制煞車油壓避免輪胎鎖

死並最大化煞車性能。在ABS與TCS性能驗證方面首先利用dSPACE ASM 整車模型進行模型在環驗證(MiL),確認控制方法的可行性。接著架設動力系統與煞車系統硬體測試平台,同時整合控制策略、車輛模型、線控硬體進行硬體在環測試驗證(HiL)。由測試結果可以證明本研究發展的TCS與ABS能有效提升車輛加減速性能,且滿足國內相關安全法規的要求。