PTC加熱 水的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列線上看、影評和彩蛋懶人包

PTC加熱 水的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦王芳夏軍寫的 電動汽車動力電池系統設計與制造技術 可以從中找到所需的評價。

臺北城市科技大學 機電整合研究所 楊子毅所指導 簡宏道的 應用熱傳導的貴金屬檢測儀之研製 (2019),提出PTC加熱 水關鍵因素是什麼,來自於熱傳導、檢測儀、貴金屬、黃金、K金、合銅、檢測。

而第二篇論文國立虎尾科技大學 電機工程系碩士在職專班 林光浩所指導 李宗穎的 低成本椴木培養箱溫濕度控制系統 (2016),提出因為有 牛樟芝、DS1821、DHT11、溫濕度控制系統、Verilog的重點而找出了 PTC加熱 水的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了PTC加熱 水,大家也想知道這些:

電動汽車動力電池系統設計與制造技術

為了解決PTC加熱 水的問題,作者王芳夏軍 這樣論述:

本書內容立足於中國電動汽車產業的實際情況,從多個角度對動力電池系統的設計與製造進行了系統化的梳理和論述,可以用於指導企事業單位的方案論證、產品開發、技術研究、生產製造和售後服務等工作。 全書共8章,包括動力電池系統技術發展綜述、總體方案設計(系統設計)、結構與電連接設計、電池管理系統(BMS)設計、熱管理設計、結構模擬分析、試驗驗證,以及生產製造技術,可以為讀者提供豐富的工程實踐參考。 電動汽車動力電池系統技術發展綜述 1   1.1 電動汽車發展史 2   1.1.1 電動汽車的DIYI個黃金時代 2   1.1.2 電動汽車的第二個黃金時代 2   1.1.3 電動汽

車的第三個黃金時代 4   1.2 電動汽車Pack產品分類 5   1.2.1 動力儲能電池的分類 6   1.2.2 動力電池系統的功能分類 10   1.2.3 動力電池系統在整車的安裝位置 19   1.3 電動汽車Pack的關鍵技術 23   1.3.1 系統集成技術 24   1.3.2 電芯設計及選型 25   1.3.3 結構設計技術 27   1.3.4 電池包電子電氣設計 28   1.3.5 電池包熱設計 29   1.3.6 電池包安全設計 30   1.3.7 電池包模擬分析技術 32   1.3.8 電池包工藝設計 32   1.4 我國電動汽車Pack技術發展趨勢

33   1.4.1 我國新能源汽車的發展階段 33   1.4.2 我國政府制定的2020年關鍵技術指標 34   1.4.3 技術挑戰及發展趨勢 35   參考文獻 38   第2章 動力電池系統總體方案設計 41   2.1 動力電池系統總體方案設計概述 42   2.1.1 動力電池系統總體方案設計流程 42   2.1.2 動力電池系統的總體需求分析 43   2.1.3 動力電池系統的基本性能參數 47   2.1.4 動力電池系統產品參數匹配性分析 48   2.2 單體電池的選型與設計 51   2.2.1 單體電池的選型與設計概述 51   2.2.2 單體電池的選型依據

51   2.2.3 單體電池容量選型設計 52   2.2.4 單體電池選型和容量設計示例 53   2.3 機械結構概念設計 57   2.3.1 機械結構總體設計概述 57   2.3.2 機械結構設計要求 58   2.3.3 電池包在整車上的佈置 62   2.3.4 電池包總體佈置方案設計 67   2.3.5 電池箱體和電池模組概念方案設計 69   2.4 電池管理系統概念設計 71   2.4.1 電池管理系統設計概述 71   2.4.2 電池管理系統基本功能 71   2.4.3 電池管理系統設計要求 72   2.4.4 電池管理系統概念設計方案 76   2.5 高

壓電氣系統設計 77   2.5.1 高壓電氣系統設計概述 77   2.5.2 高壓電氣系統設計要求 78   2.5.3 高壓電氣系統概念設計方案 81   2.6 熱管理系統設計 84   2.6.1 鋰離子動力電池的溫度特性 84   2.6.2 熱管理系統設計概述 85   2.6.3 熱管理系統基本功能 86   2.6.4 熱管理系統設計要求 86   2.6.5 熱管理系統概念設計方案 86   參考文獻 90   第3章 動力電池系統結構與電連接設計 93   3.1 電池系統結構設計概述 94   3.2 模組結構設計 95   3.2.1 需求邊界 95   3.2.2

模組的固定與連接 98   3.2.3 模組電連接設計 103   3.2.4 模組安全設計 107   3.2.5 模組尺寸標準化 108   3.3 電箱結構設計 109   3.3.1 需求邊界 110   3.3.2 整體排布設計 110   3.3.3 詳細設計 112   3.3.4 電連接設計 116   3.3.5 電箱安全設計 119   3.4 高壓箱結構設計 123   3.5 輕量化設計 125   3.5.1 新的成組方式 126   3.5.2 新型材料的應用 128   3.5.3 極限設計 129   3.6 IP防護設計 131   3.6.1 接觸防護 1

31   3.6.2 防水防塵 132   參考文獻 138   第4章 動力電池管理系統(BMS)設計 139   4.1 BMS的功能及其重要性 140   4.1.1 BMS的角色定位 140   4.1.2 BMS的主要功能 141   4.2 BMS的硬體開發要點 146   4.2.1 拓撲結構的選擇 146   4.2.2 電壓、電流、溫度採集電路的設計要點 150   4.2.3 BMS中兩個關鍵硬體模組的設計 154   4.2.4 BMS的抗干擾設計 158   4.2.5 面向提高可靠性的冗餘設計 161   4.3 BMS的軟體發展要點 162   4.3.1 SOC相

關的概念 162   4.3.2 電池荷電狀態(SOC)估算 164   4.3.3 電池健康狀態(SOH)評估 167   4.3.4 SOF的估算 170   4.4 BMS的測試與驗證 172   4.4.1 一些值得討論的問題 172   4.4.2 在產品設計、製造的不同階段對BMS 的驗證 173   4.4.3 用於BMS驗證的電池模擬器 174   參考文獻 177   第5章 動力電池系統熱管理設計 179   5.1 熱管理系統設計概述 180   5.1.1 熱管理系統的“V”模型開發模式 180   5.1.2 模擬分析的應用 182   5.1.3 實驗驗證 189

  5.2 冷卻系統設計 190   5.2.1 冷卻方式的選擇 191   5.2.2 自然冷卻系統 191   5.2.3 強制風冷系統 193   5.2.4 液冷系統 197   5.2.5 直冷系統 212   5.3 加熱系統設計 214   5.3.1 設計需求 214   5.3.2 電加熱膜設計 216   5.3.3 PTC加熱設計 218   5.3.4 液熱設計 220   5.4 保溫系統設計 222   5.4.1 保溫設計概述 222   5.4.2 模組保溫設計 222   5.4.3 箱體保溫設計 223   5.5 熱管的應用 224   5.5.1 熱管

簡介 224   5.5.2 熱管在熱管理系統中的應用 225   5.5.3 熱管應用注意事項 225   參考文獻 226   第6章 動力電池系統結構模擬分析 227   6.1 電池系統結構優化 228   6.1.1 結構拓撲優化 228   6.1.2 電池殼體結構形貌優化 230   6.1.3 其他優化方法簡介 231   6.2 動力電池系統結構強度模擬 232   6.2.1 彈性變形體的基本假設 232   6.2.2 應力應變基本概念及關係 232   6.2.3 材料模型 235   6.2.4 衝擊分析 236   6.2.5 擠壓模擬分析 240   6.3 動

力電池系統振動疲勞模擬 242   6.3.1 疲勞理論介紹 242   6.3.2 基於極限拉伸強度的S-N曲線估算 245   6.3.3 結構振動疲勞壽命估算 250   6.3.4 隨機振動案例解析 255   6.4 製造工藝模擬 259   6.4.1 衝壓成型模擬 260   6.4.2 超聲波焊接模擬 262   6.4.3 攪拌摩擦焊接 263   6.4.4 模流分析 269   參考文獻 272   第7章 動力電池系統開發性試驗驗證 275   7.1 電池單體測評 276   7.1.1 出廠參數 277   7.1.2 溫度和倍率充電性能 277   7.1.3 溫

度和倍率放電性能 279   7.1.4 恒功率特性 280   7.1.5 脈衝功率特性 281   7.1.6 能量效率 282   7.1.7 荷電保持能力 283   7.1.8 產熱特性 284   7.1.9 老化特性 285   7.1.10 安全性測試 287   7.2 動力電池系統開發性驗證 289   7.2.1 系統功能 289   7.2.2 系統殼體防護功能 292   7.2.3 電性能 295   7.2.4 可靠性 304   7.2.5 安全性 311   7.2.6 熱管理系統開發性試驗驗證方法 316   7.2.7 EMC開發性試驗驗證方法 317  

參考文獻 321   第8章 動力電池系統製造技術概述 323   8.1 概述 324   8.2 模組結構和工藝介紹 324   8.2.1 圓柱電芯模組結構和工藝介紹 325   8.2.2 方形電芯模組結構和工藝介紹 329   8.2.3 軟包電芯模組結構和工藝介紹 331   8.3 關鍵工藝介紹 334   8.3.1 電芯分選 334   8.3.2 電阻焊接 335   8.3.3 鍵合焊接 340   8.3.4 鐳射焊接 343   8.3.5 打膠工藝 346   8.3.6 Pack總裝緊固 348   8.3.7 線束裝配 350   8.3.8 氣密性檢測 3

51   8.4 生產程序控制 352   8.5 下線測試(EOL) 359   8.5.1 下線測試(EOL)作用 359   8.5.2 下線測試(EOL)檢測功能需求分析 359   8.6 模組及Pack 資訊/自動化 363   8.6.1 動力電池模組與Pack產線的自動化 363   8.6.2 動力電池模組與Pcak產線的資訊化 365   8.6.3 動力電池模組與Pack產線的智能化 367   8.6.4 本章小結 370   參考文獻 370   縮略語 371

應用熱傳導的貴金屬檢測儀之研製

為了解決PTC加熱 水的問題,作者簡宏道 這樣論述:

本論文主要是針對應用熱傳導的貴金屬檢測儀之研製進行研究,該系統包括環境溫控系統、自動檢測系統、探針溫控系統、探針檢測機構、樣品夾具載台等系統的設計,在檢測應用方面針對貴金屬中的黃金、市售常見不同含金量的K金、合銅等進行各項不同的探針溫度、環境溫度與檢測時間交叉測試。本研究是使用傅立葉熱傳定律與熱導率理論設計出可控溫差式熱傳導貴金屬檢測儀,並結合對環境溫控的檢測室與自動化檢測系統之設計來達成公平的檢測環境,以求該系統能夠在任何環境溫度條件下進行準確測試。檢測應用方面,此次研究針對金含量24K、18K、14K、12K等貴金屬與合銅進行測試,在不同的環境溫度、探針溫度與檢測時間的情況下,交

叉比對後發現,當環境溫度控制在10℃時,探針溫度為100℃,使用5秒的檢測時間,能夠精準將各樣品明確區分。

低成本椴木培養箱溫濕度控制系統

為了解決PTC加熱 水的問題,作者李宗穎 這樣論述:

近年兩岸牛樟芝研討會,有關於牛樟芝功效的新聞報導,由數名專家學者討論「中藥牛樟芝治療惡性腫瘤」百人臨床試驗計畫,是希望牛樟芝藥材能發揚光大,造福百姓、治病、救人,目前栽培使用的培養箱,不具溫濕度控制系統,仰賴人工噴灑水氣或加溫處理。 本研究透過FPGA開發平台,建立設計低成本牛樟芝栽培箱,以簡易便宜塑膠箱及材料來達成塑膠箱內模擬牛樟芝生長環境,設計裝設溫濕度感測器,監控牛樟芝生長,希望透過溫濕度控制系統栽培,讓稀少的牛樟木塊能發輝最大的產值,達到穩定的控制效果; 本研究主要感測器讀取兩個部份,第一部份為DS1821溫度感測器的數位解碼串列資料讀取設計,第二部份為DHT11濕度感測器的數

位編碼設計,並利用FPGA開發板實現溫度、濕度LCD顯示,溫濕度控制,使用小規模的展示培養希望能夠更加方便簡單觀查培養管理.