Sounding rocket的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列線上看、影評和彩蛋懶人包

另外網站Fertilization of frog eggs on a Sounding Rocket in space也說明:During the TEXUS-17 flight (April/May 1988) eggs of a higher organism, the anuran amphibian Xenopus laevis, have for the first time been successfully ...

國立陽明交通大學 機械工程系所 吳宗信所指導 林育宏的 低腔壓高濃度過氧化氫混合式火箭引擎之研究 (2021),提出Sounding rocket關鍵因素是什麼,來自於混合式火箭引擎、渦漩注入式燃燒室、高濃度過氧化氫、聚丙烯、推力控制、低腔壓、深度節流、前瞻火箭研究中心。

而第二篇論文國立陽明交通大學 機械工程系所 吳宗信所指導 黃振瑋的 混合式火箭HTTP-3AT懸浮飛行控制系統的開發 (2021),提出因為有 繫留懸浮飛行、飛行控制系統、混合式火箭、六自由度模擬、蒙地卡羅分析、推力向量控制、氧化劑節流控制的重點而找出了 Sounding rocket的解答。

最後網站Home | CU Sounding Rocket Laboratory則補充:Hello and welcome to the CU Sounding Rocket Laboratory (SRL)!. We are a student-run organization dedicated to giving CU students advanced hands-on ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了Sounding rocket,大家也想知道這些:

Sounding rocket進入發燒排行的影片

こちらはNVSのニコニコ生放送のミラーリング配信です

ブロマガで質問に答える生配信やってます!登録してね
https://ch.nicovideo.jp/horiemon

YouTubeにはない情報も!ホリエモン公式メルマガ配信中
登録はこちら→ http://horiemon.com/magazine/

堀江によるオンラインサロン、通称HIU(堀江貴文イノベーション大学校)のメンバーも募集中です!
詳細はこちら→https://lounge.dmm.com/detail/87/

ホリエモンチャンネルのノーカット版は月額840円のFRESH会員限定でご覧いただけます
詳細はこちら→https://freshlive.tv/horiemon

----------おすすめ書籍-------------
【NEW】東京改造計画(NewsPicks Book) ※5/30発売
https://amzn.to/2LMUIWU
【NEW】努力するな。マンガを読め。(主婦の友社)
https://amzn.to/2KLgEkW
【NEW】スマホ人生戦略 お金・教養・フォロワー35の行動スキル(学研プラス)
https://amzn.to/3caGJoX
ゼロ―――なにもない自分に小さなイチを足していく(ダイヤモンド社)
https://amzn.to/2VHSx9J
多動力 (NewsPicks Book) (幻冬舎文庫)
https://amzn.to/2HNvlSv

堀江貴文
Twitter : @takapon_jp
寺田有希
Twitter : @terada_yuki
オフィシャルHP:http://yukiterada.com/

運営:SNS media&consulting 株式会社
https://horiemon.com/company/
編集:エイジメディア株式会社
http://www.agemedia.jp/

低腔壓高濃度過氧化氫混合式火箭引擎之研究

為了解決Sounding rocket的問題,作者林育宏 這樣論述:

本論文為混合式火箭系統入軌段火箭引擎的前期研究,除了高引擎效率的要求外,更需要精準的推力控制與降低入軌段火箭的結構重量比,以增加入軌精度與酬載能力。混合式火箭引擎具相對安全、綠色環保、可推力控制、管路簡單、低成本等優點,並且可以輕易地達到引擎深度節流推力控制,對於僅能單次使用、需要精準進入軌道的入軌段火箭推進系統有相當大的應用潛力。其最大的優點是燃料在常溫下為固態、易保存且安全,即使燃燒室或儲存槽受損,固態的燃料也不會因此產生劇烈的燃燒而導致爆炸。雖然混合式推進系統有不少優於固態及液態推進系統的特性,相較事先預混燃料與氧化劑的固態推進系統及可精準控制氧燃比而達到高度燃燒效率的液態推進系統,混

合式推進系統有擴散焰邊界層燃燒特性,此因素導致混合式推進系統的燃料燃燒速率普遍偏低,使得設計大推力引擎設計時需要長度較長的燃燒室來提供足夠的燃料燃燒表面積,也導致得更高長徑比的火箭設計。針對此問題,本論文利用渦漩注入氧化劑的方式,增加了氧化劑在引擎內部的滯留時間,並藉由渦旋流場提升氧化劑與燃料的混合效率以及燃料耗蝕率;同時降低引擎燃燒室工作壓力以研究其推進效能,並與較高工作壓力進行比較。本論文使用氮氣加壓供流系統驅動90%高濃度過氧化氫 (high-test peroxide) 進入觸媒床,並使用三氧化二鋁 (Al2O3) 為載體的三氧化二錳 (Mn2O3) 觸媒進行催化分解,隨後以渦漩注入的

方式注入燃燒腔,並與燃料聚丙烯(polypropylene, PP)進行燃燒,最後經由石墨鐘形噴嘴 (bell-shaped nozzle) 噴出燃燒腔後產生推力。實驗部分首先透過深度節流測試先針對原版腔壓40 barA引擎在低腔壓下的氧燃比 (O/F ratio)、特徵速度 (C*)、比衝值 (Isp) 等引擎性能進行研究,提供後續設計20 barA低腔壓引擎的依據,並整理出觸媒床等壓損以及燃燒室等流速的引擎設計轉換模型;同時使用CFD模擬驗證渦漩注射器於氧化劑全流量下 (425 g/s) 的壓損與等壓損轉換模型預測的數值接近 (~1.3 bar)。由腔壓20 barA 引擎的8秒hot-f

ire實驗結果顯示,由於推力係數 (CF) 在低腔壓引擎的理論值 (~1.4) 相較於腔壓40 barA引擎的推力係數理論值 (~1.5) 較低,因此腔壓20 barA引擎的海平面Isp相較於腔壓40 barA引擎的Isp 低了約13 s,但是兩組引擎具有相近的Isp效率 (~94%),且長時間的24秒hot-fire測試顯示Isp效率會因長時間燃燒而提升至97%。此外,氧化劑流量皆線性正比於推力與腔壓,判定係數 (R2) 也高於99%,實現混合式火箭引擎推力控制的優異性能。透過燃料耗蝕率與氧通量之關係式可知,低腔壓引擎在相同氧化劑通量下 (100 kg/m2s) 較腔壓40 barA引擎降低

了約15%的燃料耗蝕率,因此引擎的燃料耗蝕率會受到腔體壓力轉換的影響而變動,本論文也針對此現象歸納出一校正方法以預測不同腔壓下的燃料耗蝕率,此校正後的關係式可提供未來不同腔壓引擎燃料長度設計上的準則。最後將雙氧水貯存瓶的上游氮氣加壓壓力從約58 barA降低至38 barA並進行8秒hot-fire測試,結果顯示仍能得到與過往測試相當接近的Isp效率 (~94%),而此特性除了能讓雙氧水及氮氣貯存瓶擁有輕量化設計的可能性,搭配具流量控制的控制閥也有利於未來箭體朝向blowdown type型式的設計,因此雙氧水加壓桶槽上的氮氣調壓閥 (N2 pressure regulator valve)

將可省去,得以降低供流系統的重量,並增加箭體的酬載能力,對於未來箭體輕量化將是一大優勢。

混合式火箭HTTP-3AT懸浮飛行控制系統的開發

為了解決Sounding rocket的問題,作者黃振瑋 這樣論述:

本研究著重在利用混合式火箭進行懸浮飛行控制的實驗,並作為臺灣開發衛星發射載具控制技術的初步驗證。常見的化學火箭有三種類型,分別是固態、液態以及混合式,其中混合式引擎安全性最高,系統簡單,也具備推力可控制潛力,至今仍未成功被用在衛星發射載具。就混合式火箭推力大小控制來說,目前世界上極少有實用性的相關研究。在對系統特性掌握度還不夠高的情況下,很難發展完整的飛行控制,多半只應用在沒有導引也沒有控制的探空火箭上,因此還有很大的研發空間。現行控制混合式火箭的方法包含使用可動翼、液體注入式推力向量控制、或是差分節流,應用的場合分別是短時間的太空旅遊、衛星發射載具、和登陸器。但是上述唯一成功飛行的可動翼控

制則只能在低空運作,不適合作為衛星發射載具的主要控制方法,其他方式則還沒成功完成飛試。本論文中的HTTP-3AT火箭採用現代衛星發射載具常用的推力向量控制,以多個可控推力的混合式引擎搭配單軸推力向量控制,並開發導引和控制法則,使用多迴路PID控制器搭配質量特性補償器,使用GPSR提供的速度以及IMU提供的角速度搭配導引法則回授控制,成功在25秒的繫留懸浮測試中穩定飛行,降落位置的誤差小於0.4公尺。同時,本研究也基於MATLAB Simulink開發出六自由度模擬器ZIYASim,用來評估火箭本身及控制器的性能,並成功在第六次測試前預測實際火箭飛行軌跡與姿態。除此之外,ZIYASim也用來測試

系統在誤差和干擾下的反應,並使用蒙地卡羅方法分析出各項次系統的容許誤差及火箭抗干擾規格,預期在不久後能作為衛星發射載具模擬器研發的基礎。