cnn深度學習應用的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列線上看、影評和彩蛋懶人包

cnn深度學習應用的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦李金洪寫的 全格局使用PyTorch:深度學習和圖神經網路 實戰篇 和VishnuSubramanian的 PyTorch深度學習實作:利用PyTorch實際演練神經網路模型都 可以從中找到所需的評價。

另外網站深度學習- 維基百科,自由的百科全書也說明:卷積深度神經網路(Convolutional Neural Networks, CNN)在電腦視覺領域得到了成功的應用。此後,卷積神經網路也作為聽覺模型被使用在自動語音辨識領域,較以往的方法獲得 ...

這兩本書分別來自深智數位 和博碩所出版 。

國立中正大學 電機工程研究所 余松年所指導 何亞恩的 一個使用智慧型手機實現深度學習心電圖分類的心臟疾病辨識系統 (2022),提出cnn深度學習應用關鍵因素是什麼,來自於智慧型手機即時辨識、心電圖、深度學習、多卷積核模型、注意力機制。

而第二篇論文國立陽明交通大學 電子研究所 張添烜所指導 江宇翔的 應用於物件偵測與關鍵字辨識之強健記憶體內運算設計 (2021),提出因為有 記憶體內運算、物件偵測、關鍵字辨識、模型個人化的重點而找出了 cnn深度學習應用的解答。

最後網站課程模組1_精通深度學習則補充:深度學習 模型與影像辨識應用 ... 熟悉深度學習的常見模型介紹捲積神經網路模型(CNN)、遞歸神經網路(RNN)、長短期記憶模型(LSTM)與生成對抗網路(GAN)、深度剩餘網 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了cnn深度學習應用,大家也想知道這些:

全格局使用PyTorch:深度學習和圖神經網路 實戰篇

為了解決cnn深度學習應用的問題,作者李金洪 這樣論述:

熟悉基礎,精通實戰。   接續了上一本實戰篇的基礎,本書將介紹目前最流行的物體辨識和自然語言處理在圖神經網路上的最完整應用。當你熟悉了神經網路之後,接下來要精進的就是針對網路結果的強化及最佳化。在GNN的基礎上,針對目前最流行的視覺處理模型進行修改、架設及強化,並且實際應用在現有的平台上。本書的重點就是大量了使用現有的Python函數庫,並且應用了最新的資料集,讓你能真正看到資料套用在模型上的強大能力。在針對Pytorch的函數庫上,不但有視覺應用,更有號稱人工智慧明珠的NLP應用。使用了Torchtext以及NLP的唯一/最佳選擇Huggingface Transformers。而大家

耳熟能詳,但又不知道怎麼用的模型,包括GPT-2、Transformer-XL、ALBERT、ELECTRA、DistillBERT等,在書中都有詳細介紹。另外為了解開DL的神祕,本書也難得介紹了Captum套件,讓深度神經網路更具可解釋性。本書最後也不忘介紹ZSL、這種極少量資料就可訓練高精度模型的方法。有關異質圖神經網路部分,也有大量DGL和NetworkX的範例,實戰篇+基礎篇兩本書,要不充分了解GNN都不行。 本書特色   ~GNN 最強實戰參考書~   ●使用圖型的預訓練模型、Torschvision,GaitSet模型、CASIA-B資料集   ●高級NLP模型訓練及微調、BE

RTology、CBOW、Skip-Gram、Torchtext、spaCy   ●文字使用模型TextCNN來把玩IMDB資料庫   ●高階工程師才會用的Mist啟動函數、Ranger最佳化器   ●正宗NLP函數庫Huggingface Transformers詳解、AutoModel、AutoModelWithMHead、多頭注意力、PretrainedTokernizer  

一個使用智慧型手機實現深度學習心電圖分類的心臟疾病辨識系統

為了解決cnn深度學習應用的問題,作者何亞恩 這樣論述:

目錄誌謝 i摘要 iiAbstract iii目錄 v圖目錄 viii表目錄 xi第一章 緒論 11.1研究動機 11.2研究目的 21.3研究架構 2第二章 研究背景 32.1心電圖與疾病介紹 32.1.1心臟導程 32.1.2心臟疾病介紹 52.2Android系統 102.2.1 Android的基礎 102.2.2 Android系統框架 102.3相關文獻探討 11第三章 研究方法 173.1資料庫介紹 173.2訊號前處理 193.2.1小波濾波 193.2.2訊號正規化 213.3一維訊號轉二維影像 213.3.1手機螢幕上

繪製圖形 213.3.2影像儲存於智慧型手機 233.3.3資料擴增Data Augmentation 243.4深度學習架構 253.4.1多卷積核架構 253.4.2注意力模型 283.4.2.1通道注意力模組Channel attention 293.4.2.2空間注意力模組Spatial attention 303.4.2.3激活函數Activation function 303.5損失函數Loss function 313.6交叉驗證Cross validation 323.7優化訓練模型 333.8移動端應用 343.9硬體設備、軟體環境與開發環境 36

3.9.1硬體設備 363.9.2軟體環境與開發環境 37第四章 研究結果與討論 3834.1評估指標 384.2訓練參數設定 404.3實驗結果 414.3.1深度學習模型之辨識結果 414.3.1.1比較資料擴增前後之分類結果 414.3.1.2不同模型架構之分類結果 424.3.2智慧型手機應用結果 464.4相關文獻比較 48第五章 結論與未來展望 525.1結論 525.2未來展望 53參考文獻 54

PyTorch深度學習實作:利用PyTorch實際演練神經網路模型

為了解決cnn深度學習應用的問題,作者VishnuSubramanian 這樣論述:

  PyTorch是Facebook於2017年初在機器學習和科學計算工具Torch的基礎上,針對Python語言發佈的一個全新的機器學習工具套件,一經推出便受到業界廣泛關注和討論,目前已經成為機器學習從業人員首選的一款研發工具。   本書是使用PyTorch建構神經網絡模型的實用指南,內容分為9章,包括PyTorch與深度學習的基礎知識、神經網路的構成、神經網路的高階知識、機器學習基礎知識、深度學習在電腦視覺上的應用、深度學習在序列資料和文字當中的應用、生成網路、現代網路架構,以及PyTorch與深度學習的未來走向。   本書適合對深度學習領域感興趣且希望一探PyTo

rch究竟的業界人士閱讀。具備其他深度學習框架使用經驗的讀者,也可以透過本書掌握PyTorch的用法。   本書範例檔:   github.com/PacktPublishing/Deep-Learning-with-PyTorch

應用於物件偵測與關鍵字辨識之強健記憶體內運算設計

為了解決cnn深度學習應用的問題,作者江宇翔 這樣論述:

近年來,由於不同的應用都能夠藉由和深度學習的結合而達到更好的結果,像是物件偵測、自然語言處理以及圖像辨識,深度學習在終端設備上的發展越來越廣泛。為了應付深度學習模型的龐大資料搬移量,記憶體內運算的技術也在近年來蓬勃發展,不同於傳統的范紐曼架構,記憶體內運算使用類比域的計算使儲存設備也同樣具備運算的能力。儘管記憶體內運算具有降低資料搬移量的優點,比起純數位的設計,在類比域進行計算容易受到非理想效應的影響,包括元件本身或是周邊電路的誤差,這會造成模型災難性的失敗。此篇論文在兩種不同的應用領域針對記憶體內運算進行強健的模型設計及硬體實現。在電阻式記憶體內運算的物件偵測應用當中,我們將重點放在改善模

型對於非理想效應的容忍度。首先,為了降低元件誤差的影響,我們將原本的二值化權重網路改變為三值化權重網路以提高電阻式記憶體中高阻態元件的數量,同時能夠直接使用正權重及負權重位元線上的電流值進行比較而不使用參考位元線作為基準。其次,為了避免使用高精度的正規化偏差值以及所導致的大量低阻態元件佈署,我們選擇將網路中的批次正規化層移除。最後,我們將運算從分次的電流累加運算改為一次性的運算,這能夠將電路中非線性的影響降到最低同時避免使用類比域的累加器。相較於之前的模型會受到這些非理想效應的嚴重影響導致模型無法運作,我們在考慮完整的元件特性誤差,周邊電路誤差以及硬體限制之下,於IVS 3cls中做測試,能夠

將平均精確度下降控制在7.06\%,在重新訓練模型後能更進一步將平均精確度下降的值降低到3.85\%。在靜態隨機存取記憶體內運算的關鍵字辨識應用當中,雖然非理想效應的影響相對較小,但是仍然需要針對周邊電路的誤差進行偏壓佈署補償,在經過補償及微調訓練後,在Google Speech Command Dataset上能夠將準確率下降控制在1.07\%。另外,由於語音訊號會因為不同使用者的資料而有大量的差異,我們提出了在終端設備上進行模型的個人化訓練以提高模型在小部分使用者的準確率,在終端設備的模型訓練需要考量到硬體精度的問題,我們針對這些問題進行誤差縮放和小梯度累積以達到和理想的模型訓練相當的結果

。在後佈局模擬的結果中,這個設計在推論方面相較於現有的成果能夠有更高的能源效率,達到68TOPS/W,同時也因為模型個人化的功能而有更廣泛的應用。