isothermal expansion的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列線上看、影評和彩蛋懶人包

isothermal expansion的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦(美)朱利安尼寫的 電子液體量子理論 英文 可以從中找到所需的評價。

另外網站Increasing temperature increases disorder, because the entropy也說明:The difference between the energy and enthalpy changes in expanding an ideal gas. How much heat is required to cause the quasi-static isothermal expansion ...

國立清華大學 材料科學工程學系 徐文光所指導 曾兆綦的 以碳氫化合物熱裂解法製備碳包覆奈米高熵合金顆粒 (2021),提出isothermal expansion關鍵因素是什麼,來自於奈米碳管、高熵合金奈米顆粒、碳氫化合物熱裂解法。

而第二篇論文國立中山大學 材料與光電科學學系研究所 張志溥所指導 周安琪的 組織變化對變韌鐵鋼擴孔行為與拉伸性質之影響 (2021),提出因為有 變韌鐵鋼、擴孔、拉伸性質、顯微組織、裂縫的重點而找出了 isothermal expansion的解答。

最後網站Isothermal Expansion of an Ideal Gas - CoolGyan.Org則補充:Isothermal expansion. In an ideal gas, all the collisions between molecules or atoms are perfectly elastic and no intermolecular force of attraction exists ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了isothermal expansion,大家也想知道這些:

電子液體量子理論 英文

A PHP Error was encountered

Severity: Warning

Message: file_put_contents(/var/www/html/prints/public/images/books_new/CN1/078/86/CN10786486.jpg): failed to open stream: Permission denied

Filename: helpers/global_helper.php

Line Number: 140

Backtrace:

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 140
Function: file_put_contents

File: /var/www/html/prints/application/views/article_v2.php
Line: 144
Function: coverWebp_online

File: /var/www/html/prints/application/controllers/Pages.php
Line: 662
Function: view

File: /var/www/html/prints/public/index.php
Line: 319
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: getimagesize(/var/www/html/prints/public/images/books_new/CN1/078/86/CN10786486.jpg): failed to open stream: No such file or directory

Filename: helpers/global_helper.php

Line Number: 62

Backtrace:

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 62
Function: getimagesize

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 142
Function: coverWebp

File: /var/www/html/prints/application/views/article_v2.php
Line: 144
Function: coverWebp_online

File: /var/www/html/prints/application/controllers/Pages.php
Line: 662
Function: view

File: /var/www/html/prints/public/index.php
Line: 319
Function: require_once

A PHP Error was encountered

Severity: Notice

Message: Trying to access array offset on value of type bool

Filename: helpers/global_helper.php

Line Number: 64

Backtrace:

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 64
Function: _error_handler

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 142
Function: coverWebp

File: /var/www/html/prints/application/views/article_v2.php
Line: 144
Function: coverWebp_online

File: /var/www/html/prints/application/controllers/Pages.php
Line: 662
Function: view

File: /var/www/html/prints/public/index.php
Line: 319
Function: require_once

A PHP Error was encountered

Severity: Notice

Message: Trying to access array offset on value of type bool

Filename: helpers/global_helper.php

Line Number: 66

Backtrace:

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 66
Function: _error_handler

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 142
Function: coverWebp

File: /var/www/html/prints/application/views/article_v2.php
Line: 144
Function: coverWebp_online

File: /var/www/html/prints/application/controllers/Pages.php
Line: 662
Function: view

File: /var/www/html/prints/public/index.php
Line: 319
Function: require_once

A PHP Error was encountered

Severity: Notice

Message: Trying to access array offset on value of type bool

Filename: helpers/global_helper.php

Line Number: 68

Backtrace:

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 68
Function: _error_handler

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 142
Function: coverWebp

File: /var/www/html/prints/application/views/article_v2.php
Line: 144
Function: coverWebp_online

File: /var/www/html/prints/application/controllers/Pages.php
Line: 662
Function: view

File: /var/www/html/prints/public/index.php
Line: 319
Function: require_once

為了解決isothermal expansion的問題,作者(美)朱利安尼 這樣論述:

The electron liquid paradigm is at the basis of most of our current understanding of the physical properties of electronic systems. Quite remarkably, the latter are nowadays at the intersection of the most exciting areas of science: materials science, quantum chem- istry, nano-electronics, biology,

and quantum computation. Accordingly, its importance can hardly be overestimated. The field is particularly attractive not only for the simplicity of its classic formulation, but also because, by its very nature, it is still possible for individual researchers, armed with thoughtfulness and dedicati

on, and surrounded by a small group of collaborators, to make deep contributions, in the best tradition of "small science". preface 1 introduction to the electron liquid 1.1 a tale of many electrons 1.2 where the electrons roam: physical realizations of the electron liquid 1.2.1 three dime

nsions 1.2.2 two dimensions 1.2.3 one dimension 1.3 the model hamiitonian 1.3.1 jeilium model 1.3.2 coulomb interaction regularization 1.3.3 the electronic density as the fundamental parameter 1.4 second quantization 1.4.1 fock space and the occupation number representation 1.4.2 representation of o

bservables 1.4.3 construction of the second-quantized hamiltonian 1.5 the weak coupling regime 1.5.1 the noninteracting electron gas 1.5.2 noninteracting spin polarized states 1.5.3 the exchange energy 1.5.4 exchange energy in spin polarized states 1.5.5 exchange and the pair correlation function 1.

5.6 all-orders perturbation theory: the rpa 1.6 the wigner crystal 1.6.1 classical electrostatic energy 1.6.2 zero-point motion 1.7 phase diagram of the electron liquid 1.7.1 the quantum monte carlo approach 1.7.2 the ground-state energy 1.7.3 experimental observation of the electron gas phases 1.7.

4 exotic phases of the electron liquid 1.8 equilibrium properties of the electron liquid 1.8.1 pressure, compressibility, and spin susceptibility 1.8.2 the virial theorem 1.8.3 the ground-state energy theorem exercises 2 the hartree——fock approximation 2.1 introduction 2.2 formulation of the hartre

e-fock theory 2.2.1 the hartree-fock effective hamiltonian 2.2.2 the hartree-fock equations 2.2.3 ground-state and excitation energies 2.2.4 two stability theorems and the coulomb gap 2.3 hartree-fock factorization and mean field theory 2.4 application to the uniform electron gas 2.4.1 the exchange

energy 2.4.2 polarized versus unpolarized states 2.4.3 compressibility and spin susceptibility 2.5 stability of hartree——fock states 2.5.1 basic definitions: local versus global stability 2.5.2 local stability theory 2.5.3 local and global stability for a uniformly polarized electron gas 2.6 spin de

nsity wave and charge density wave hartree-fock states 2.6.1 hartree-fock theory of spiral spin density waves 2.6.2 spin density wave instability with contact interactions in one dimension 2.6.3 proof of overhauser's instability theorem 2.7 bcs non number-conserving mean field theory 2.8 local appro

ximations to the exchange 2.8.1 slater's local exchange potential 2.8.2 the optimized effective potential 2.9 real-world hartree-fock systems exercises 3 linear response theory 3.1 introduction 3.2 general theory of linear response 3.2.1 response functions 3.2.2 periodic perturbations 3.2.3 exact e

igenstates and spectral representations 3.2.4 symmetry and reciprocity relations 3.2.5 origin of dissipation 3.2.6 time-dependent correlations and the fiuctuation——dissipation theorem 3.2.7 analytic properties and collective modes 3.2.8 sum rules. 3.2.9 the stiffness theorem 3.2.10 bogoliubov inequa

lity 3.2.11 adiabatic versus isothermal response 3.3 density response 3.3.1 the density——density response function 3.3.2 the density structure factor 3.3.3 high-frequency behavior and sum rules 3.3.4 the compressibility sum rule 3.3.5 total energy and density response 3.4 current response 3.4.1 the

current——current response function 3.4.2 gauge invariance 3.4.3 the orbital magnetic susceptibility 3.4.4 electrical conductivity: conductors versus insulators 3.4.5 the third moment sum rule 3.5 spin response 3.5.1 density and longitudinal spin response 3.5.2 high-frequency expansion 3.5.3 transver

se spin response exercises 4 linear response of independent electrons 4.1 introduction 4.2 linear response formalism for non-interacting electrons 4.3 density and spin response functions 4.4 the lindhard function 4.4.1 the static limit 4.4.2 the electron-hole continuum 4.4.3 the nature of the singu

larity at small q and to 4.4.4 the lindhard function at finite temperature 4.5 transverse current response and landau diamagnetism 4.6 elementary theory of impurity effects 4.6.1 derivation of the drude conductivity 4.6.2 the density-density response function in the presence of impurities 4.6.3 the

diffusion pole 4.7 mean field theory of linear response exercises 5 linear response of an interacting electron liquid 5.1 introduction and guide to the chapter 5.2 screened potential and dielectric function 5.2.1 the scalar dielectric function 5.2.2 proper versus full density response and the compr

essibility sum rule 5.2.3 compressibility from capacitance 5.3 the random phase approximation 5.3,1 the rpa as time-dependent hartree theory 5.3.2 static screening 5.3.3 plasmons 5.3.4 the electron-hole continuum in rpa 5.3.5 the static structure factor and the pair correlation function 5.3.6 the rp

a ground-state energy 5.3.7 critique of the rpa 5.4 the many-body local field factors 5.4.1 local field factors and response functions 5.4.2 many-body enhancement of the compressibility and the spin susceptibility 5.4.3 static response and friedel oscillations 5.4.4 the stls scheme 5.4.5 multicompon

ent and spin-polarized systems 5.4.6 current and transverse spin response 5.5 effective interactions in the electron liquid 5.5.1 test charge——test charge interaction 5.5.2 electron-test charge interaction 5.5.3 electron-electron interaction 5.6 exact properties of the many-body local field factors

5.6.1 wave vector dependence 5.6.2 frequency dependence 5.7 theories of the dynamical local field factor 5.7.1 the time-dependent hartree-fock approximation 5.7.2 first order perturbation theory and beyond 5.7.3 the mode-decoupling approximation 5.8 calculation of observable properties 5.8.1 plasmon

dispersion and damping 5.8.2 dynamical structure factor 5.9 generalized elasticity theory 5.9.1 elasticity and hydrodynamics 5.9.2 visco-elastic constants of the electron liquid 5.9.3 spin diffusion exercises 6 the perturbative calculation of linear response functions 6.1 introduction 6.2 zero-tem

perature formalism 6.2.1 time-ordered correlation function 6.2.2 the adiabatic connection 6.2.3 the non-interacting green's function 6.2.4 diagrammatic perturbation theory 6.2.5 fourier transformation 6.2.6 translationa!iy invariant systems 6.2.7 diagrammatic calculation of the lindhard function 6.2

.8 first-order correction to the density-density response function 6.3 integral equations in diagrammatic perturbation theory 6.3.1 proper response function and screened interaction 6.3.2 green's function and self-energy 6.3.3 skeleton diagrams 6.3.4 irreducible interactions 6.3.5 self-consistent eq

uations 6.3.6 two-body effective interaction: the local approximation 6.3..7 extension to broken symmetry states 6.4 perturbation theory at finite temperature exercises 7 density functional theory 7.1 introduction 7.2 ground-state formalism 7.2.1 the variational principle for the density 7.2.2 the

hohenberg-kohn theorem 7.2.3 the kohn——sham equation 7.2.4 meaning of the kohn-sham eigenvalues 7.2.5 the exchange-correlation energy functional 7.2.6 exact properties of energy functionals 7.2.7 systems with variable particle number 7.2.8 derivative discontinuities and the band gap problem 7.2.9 ge

neralized density functional theories 7.3 approximate functionais 7.3.1 the thomas-fermi approximation 7.3.2 the local density approximation for the exchange-correlation potential 7.3.3 the gradient expansion 7.3.4 generalized gradient approximation 7.3.5 van der waals functionals 7.4 current densit

y functional theory 7.4.1 the vorticity variable 7.4.2 the kohn-sham equation 7.4.3 magnetic screening 7.4.4 the local density approximation 7.5 time-dependent density functional theory 7.5.1 the runge——gross theorem 7.5.2 the time-dependent kohn-sham equation 7.5.3 adiabatic approximation 7.5.4 fre

quency-dependent linear response 7.6 the calculation of excitation energies 7.6.1 finite systems 7.6.2 infinite systems 7.7 reason for the success of the adiabatic lda 7.8 beyond the adiabatic approximation 7.8.1 the zero-force theorem 7.8.2 the "ultra-nonlocality" problem 7.9 current density functi

onal theory and generalized hydrodynamics 7.9.1 the xc vector potential in a homogeneous electron liquid 7.9.2 the exchange-correlation field in the inhomogeneous electron liquid 7.9.3 the polarizability of insulators 7.9.4 spin current density functional theory 7.9.5 linewidth of collective excitat

ions 7.9.6 nonlinear extensions exercises 8 the normal fermi liquid 8.1 introduction and overview of the chapter 8.2 the landau fermi liquid 8.3 macroscopic theory of fermi liquids 8.3.1 the landau energy functional 8.3.2 the heat capacity 8.3.3 the landau fermi liquid parameters 8.3.4 the compress

ibility 8.3.5 the paramagnetic spin response 8.3.6 the effective mass 8.3.7 the effects of the electron-phonon coupling 8.3.8 measuring m*, k, g* and xs 8.3.9 the kinetic equation 8.3.10 the shear modulus 8.4 simple theory of the quasiparticle lifetime 8.4.1 general formulas 8.4.2 three-dimensional

electron gas 8.4.3 two-dimensional electron gas 8.4.4 exchange processes 8.5 microscopic underpinning of the landau theory 8.5.1 the spectral function 8.5.2 the momentum occupation number 8.5.3 quasiparticle energy, renormalization constant, and effective mass 8.5.4 luttinger's theorem 8.5.5 the lan

dau energy functional 8.6 the renormalized hamiitonian approach 8.6.1 separation of slow and fast degrees of freedom 8.6.2 elimination of the fast degrees of freedom 8.6.3 the quasiparticle hamiltonian 8.6.4 the quasiparticle energy 8.6.5 physical significance of the renormalized hamiltonian 8.7 app

roximate calculations of the self-energy 8.7.1 the gw approximation 8.7.2 diagrammatic derivation of the generalized gw seif-energy 8.8 calculation of quasiparticle properties 8.9 superconductivity without phonons? 8.10 the disordered electron liquid 8.10.1 the quasiparticle lifetime 8.10.2 the dens

ity of states 8.10,3 coulomb lifetimes and weak localization in two-dimensional metals exercises 9 electrons in one dimension and the luttinger liquid 9.1 non-fermi liquid behavior 9.2 the luttinger model 9.3 the anomalous commutator 9.4 introducing the bosons 9.5 solution of the luttinger model 9.

5.1 exact diagonalization 9.5.2 physical properties 9.6 bosonization of the fermions 9.6.1 construction of the fermion fields 9.6.2 commutation relations 9.6.3 construction of observables 9.7 the green's function 9.7.1 analytical formulation 9.7.2 evaluation of the averages 9.7.3 non-interacting gre

en's function 9.7.4 asymptotic behavior 9.8 the spectral function 9.9 the momentum occupation number 9.10 density response to a short-range impurity 9.1 ! the conductance of a luttinger liquid 9.12 spin-charge separation 9.13 long-range interactions exercises 10 the two-dimensional electron liquid

at high magnetic field 10.1 introduction and overview 10.2 one-electron states in a magnetic field 10.2.1 energy spectrum 10.2.2 one-electron wave functions 10.2.3 fock-darwin levels 10.2.4 lowest landau level 10.2.5 coherent states 10.2.6 effect of an electric field 10.2.7 slowly varying potentials

and edge states 10.3 the integral quantum hall effect 10.3.1 phenomenology 10.3.2 the "edge state" approach 10.3.3 streda formula 10.3.4 the laughlin argument 10.4 electrons in full landau levels: energetics 10.4.1 noninteracting kinetic energy 10.4.2 density matrix 10.4.3 pair correlation function

10.4.4 exchange energy 10.4.5 the "lindhard" function 10.4.6 static screening 10.4.7 correlation energy - the random phase approximation 10.4.8 fractional filling factors 10.5 exchange-driven transitions in tilted field 10.6 electrons in full landau levels: dynamics 10.6.1 classification of neutral

excitations 10.6.2 collective modes 10.6.3 time-dependent hartree-fock theory 10.6.4 kohn's theorem 10.7 electrons in the lowest landau level 10.7.1 one full landau level 10.7.2 two-particle states: haldane's pseudopotentials 10.8 the laughlin wave function 10.8.1 a most elegant educated guess 10.8

.2 the classical plasma analogy 10.8.3 structure factor and sum rules 10.8.4 interpolation formula for the energy 10.9 fractionally charged quasiparticles 10.10 the fractional quantum hall effect 10.11 observation of the fractional charge 10.12 incompressibility of the quantum hall liquid 10.13 neut

ral excitations 10.13.1 the single mode approximation 10.13.2 effective elasticity theory 10.13.3 bosonization 10.14 the spectral function 10.14.1 an exact sum rule 10.14.2 independent boson theory 10.15 chern-simons theory 10.15.1 formulation and mean field theory 10.15.2 electromagnetic response o

f composite particles 10.16 composite fermions 10.17 the half-fi!led state 10.18 the reality of composite fermions 10.19 wigner crystal and the stripe phase 10.20 edge states and dynamics 10.20.1 sharp edges vs smooth edges 10.20.2 electrostatics of edge channels 10.20.3 collective modes at the edge

10.20.4 the chirai luttinger liquid 10.20.5 tunneling and transport exercises appendices appendix 1 fourier transform of the coulomb interaction in low dimensional systems appendix 2 second-quantized representation of some useful operators appendix 3 normal ordering and wick's theorem appendix 4 t

he pair correlation function and the structure factor appendix 5 calculation of the energy of a wigner crystal via the ewaid method appendix 6 exact lower bound on the ground-state energy of the jellium model appendix 7 the density——density response function in a crystal appendix 8 example in which

the isothermal and adiabatic responses differ appendix 9 lattice screening effects on the effective electron-electron interaction appendix 10 construction of the stls exchange-correlation field appendix 11 interpolation formulas for the local field factors appendix 12 real space-time form of the non

interacting green's function appendix 13 calculation of the ground-state energy and thermodynamic potential appendix 14 spectral representation and frequency summations appendix 15 construction of a complete set of wavefunctions, with a given density appendix 16 meaning of the highest occupied kohn-

sham eigenvalue in metals appendix 17 density functional perturbation theory appendix 18 density functional theory at finite temperature appendix 19 completeness of the bosonic basis set for the luttinger model appendix 20 proof of the disentanglement iemma appendix 21 the independent boson theorem

appendix 22 the three-dimensional electron gas at high magnetic field appendix 23 density matrices in the lowest landau level appendix 24 projection in the lowest landau level appendix 25 solution of the independent boson model references index

以碳氫化合物熱裂解法製備碳包覆奈米高熵合金顆粒

為了解決isothermal expansion的問題,作者曾兆綦 這樣論述:

由於具有獨特的性質和應用科技開發潛力,高熵合金已成為材料界極感興趣的研究目標。高熵合金是由四個以上的主要元素,以等莫爾比方式組成,因此本質上,它們的構型熵大於單一元素組成的合金。不過,在低維度時不僅表面能會增加,且會出現類似原子成簇的傾向,而使製造奈米顆粒變得極為困難。此論文中展示如何以簡單的製程於奈米碳管中合成出高熵合金奈米顆粒。電子顯微鏡和元素分析的結果皆證實被碳層所包覆的奈米顆粒為固溶相,且有些部分被碳化物環繞,組成成分元素為四元至五元的多域結構。多域結構和非磁性中心所產生的硬化現象,會顯著提高室溫下的矯頑磁場。較高的飽和磁場是源於合金化的過程會使電子重新分布到較高的能階。被碳層所包覆

的高熵合金奈米顆粒其構型熵落在與塊材高熵合金相似的範圍中。第一章 介紹奈米碳管和高熵合金的背景,包括碳管的結構、高熵合金的定義以及兩個主題分別的合成方法。第二章 說明本論文使用的實驗設定和儀器介紹。第三章 透過電子顯微鏡和成分分析證明本論文的方法可以製備出的高熵合金奈米顆粒,同時其磁性質和多域的現象也將在此章節中被討論。第四章 總結以上實驗結果。

組織變化對變韌鐵鋼擴孔行為與拉伸性質之影響

為了解決isothermal expansion的問題,作者周安琪 這樣論述:

本論文研究變韌鐵鋼,組織變化與擴孔率及拉伸性質之關係,透過裂縫周圍之顯微組織觀察,對變韌鐵鋼擴孔行為進行分析與討論。當變韌鐵相變化越完全時,擴孔率、抗拉強度以及降伏強度大致呈現下降趨勢。隨著矽含量上升,MA相(γ相)之相分率明顯增加,擴孔率呈現下降的趨勢,並且抗拉強度、降伏強度以及伸長率則呈現上升趨勢。衝孔表面形貌觀察結果顯示,剪切影響區(SAZ)深度越大代表內部變形越大,可能造成更多微裂縫,而使擴孔率下降。其中剪切區域占比也與擴孔率呈現明顯相關,當rollover區與burnish區占比上升,擴孔率下降;另外觀察到fracture區占比雖然上升,但fracture區中單位面積所含的微裂縫數

量卻減少,因此擴孔率呈現上升趨勢。透過觀察不同相分率之變韌鐵鋼,可以得知MA相相分率約在5 %以內,和γ相相分率約在1.5 %以內時,並不會影響微裂縫生長以及主裂縫擴展,裂縫多於變韌鐵中呈現穿晶現象;當MA相(γ相)之相分率約在7.6 % (3.8 %)以上時,則可以明顯觀察到微裂縫和主裂縫多位於兩相邊界上成核與成長。